2.6 Reversible Reactions, Industrial Processes and Important Chemicals

Reversible Reactions:

- Reversible Reaction a reaction that happens in both directions. This means the products of the reaction can react together to produce the original reactants.
- ← the **symbol** used to represent a reversible reaction.
- If the **forward** reaction is **exothermic**, the reverse reaction is **endothermic**.

The Haber Process:

- The Haber process is used in the industrial production of ammonia.
- Ammonia is a pungent smelling alkaline gas with the chemical formula NH₃.
- **Nitrogen** gas (from the air) and **hydrogen** gas (from natural gas) react together to **produce** ammonia.

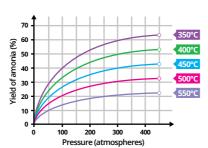
Nitrogen + Hydrogen \rightleftharpoons Ammonia $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$

- The ammonia is collected by cooling the reaction mixture so the ammonia condenses into a liquid.
- The unreacted nitrogen and hydrogen are recycled back through the process, so there is no waste.

Tests for ammonia gas and ammonium ions

Ammonia gas (NH₃)

Ammonia gas will change damp red litmus paper blue.


Ammonium ion (NH,†)

The ammonium ions convert into ammonia gas which turns the damp red litmus paper blue.

The Chosen Reaction Conditions:

 The reaction conditions for the process are a compromise between the yield of production, rate of production, cost and safety.

The graph shows that a lower temperature and higher pressure would produce the best theoretical yield

- » The rate of production is too slow at a lower temperature. A higher temperature is a compromise between yield and rate.
- » Operating at higher pressures is expensive. There is also more risk of explosions. A lower pressure is a compromise between yield and cost/safety.
- The catalyst works like any catalyst speeding up the rate of production, without getting used up. However, over time, it does get poisoned and needs replacing.

Fertilisers:

- The majority of ammonia and sulfuric acid produced is used to make fertilisers.
- Ammonium sulfate common fertiliser made by neutralising the sulfuric acid* with ammonia or ammonium hydroxide.

ammonia
$$2NH_3$$
 + $Sulfuric acid \rightarrow ammonium sulfate H_2SO_4 $\rightarrow (NH_4)_2SO_4$

ammonium H_2SO_4 + H_2SO_4 $\rightarrow (NH_4)_2SO_4$

ammonium H_2SO_4 + H_2SO_4 $\rightarrow (NH_4)_2SO_4$ + H_2SO_4 + $H_2SO_4$$

* Other acids can be used – e.g. nitric acid produces ammonium nitrate.

Advantages and disadvantages of fertilisers:

Advantages

- Increases crop yield
- Healthier crops
- Improves soil quality

Disadvantages

- Eutrophication
- Risk of stomach cancer
- Blue baby syndrome

The Contact Process:

- The Contact process is used in the industrial production of sulfuric acid, H₂SO₄.
- The process is in 3 stages. The raw materials are sulfur (stage 1), air (stages 1 + 2) and water (stage 3).

Stage 1: Sulfur buns in air to form **sulfur dioxide** gas.

Stage 2: Sulfur dioxide reacts with more oxygen to form **sulfur trioxide** gas:

sulfur dioxide + oxygen
$$\rightleftharpoons$$
 sulfur trioxide
2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}

- The reaction in this stage is reversible. The conditions used are:
 - » 400 500°C
 - » Atmospheric pressure
 - » Vanadium(V) oxide catalyst

Stage 3: Sulfur trioxide is dissolved in concentrated sulfuric acid to produce **oleum**.

sulfur trioxide + sulfuric acid
$$\rightarrow$$
 oleum $SO_{3(g)}$ + $H_2SO_{4(I)}$ \rightarrow $H_2S_2O_{7(I)}$

The oleum is then **diluted with water** to produce sulfuric acid.

oleum + Water
$$\rightarrow$$
 sulfuric acid
 $H_2S_2O_{7(I)}$ + $H_2O_{(I)}$ \rightarrow $2H_2SO_{4(I)}$

Note - adding sulfur trioxide directly to water is too violent!!!

Sulfuric acid as a dehydrating agent:

Concentrated sulfuric acid is a dehydrating agent – it **removes water** from a substance.

In **glucose** - the concentrated sulfuric acid takes away the elements of water leaving **only carbon**.

glucose
$$C_6H_{12}O_6 \rightarrow GC_{(s)} + H_2O_{(g)}$$

The water is removed as **steam** because the reaction is **exothermic.**