Trapezium

The diagram shows an **isosceles** trapezium.

The trapezium has height h and parallel sides of length a and b.

Poppy imagines a second copy of the trapezium. She rotates it to create the diagram here.

Poppy says,

"The area of a parallelogram is base times height, so the area of my diagram must be $(a + b) \times h$. The area of the trapezium is

$$A = \frac{1}{2}(a+b)h''$$

Ava thinks of a line drawn across the middle of the trapezium. She then imagines two small triangles being removed and replaced to create a rectangle as shown here.

Ava says,

"The horizontal line is the average of the lengths a and b, so this length must be $(a + b) \div 2$.

The area of the trapezium is

$$A = \left(\frac{a+b}{2}\right)h"$$

Question

Show that Poppy's and Ava's formulae are equivalent.

Extension Question

Find other 'dissections' that could be applied to an isosceles trapezium and the formulae that describe them.