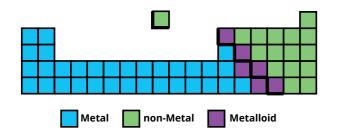

1.2 Periodic Table


Layout:

- The table contains all of the known elements
- The elements are arranged in order of increasing atomic number

- **Groups** The vertical columns
- **Periods** The horizontal rows
- Arrangement The elements and similar elements are grouped together.

Metals and Non-Metals

- Metals shiny, good conductors, high melting/ boiling points, malleable, dense
- Non-Metals dull, poor conductors, low melting/boiling points, brittle, low density
- Metalloid has properties of both metals and non-metals.

Group 1 – The Alkali Metals:

Lithium Na Sodium K

2.1 2.8.(1)

- Potassium 2.8.8.1
- Metallic properties conduct electricity and heat, shiny (when cut)
- Non-Metallic properties soft, low density, low melting/boiling points

Reactivity:

• The elements get more reactive as you go down the group

• The metals **tarnish** when they react with oxygen, forming the

• The metals react with water, forming the **metal hydroxide** and

hydroxide

• They are stored in **oil** to prevent contact with air (oxygen) and

Move

 \checkmark

 \checkmark

 \checkmark

potassium + water → potassium + hydrogen

Fizz

 \checkmark

 \checkmark

 \checkmark

1:	2 1
LI	2.1
Na	2.8.1
INC	2.0.1
V	2001
Ν	2.8.8.1

Reaction with oxygen:

Reaction with water:

Float

 \checkmark

 \checkmark

 \checkmark

sodium + oxygen \rightarrow sodium oxide

metal oxide

hydrogen gas

Li

Na

Κ

Storage:

water.

Outer shell gets further from nucleus so easier to lose 1 electron.

Melt

 \checkmark

✓

Burn

 \checkmark

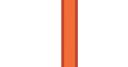
2.7 CI 2.8.7

Displacement Reactions:

from its solution

	Halide ion solution			
Halogen	potassium chloride	potassium bromide	potassium iodide	
chlorine	>	✓	✓	
bromine	×	>>	✓	
iodine	×	×	>	

bromide


Safety:

vapours.

Uses:

- Iodine plasters, sterilising sprays

Group 1 – all have 1 electron in
their outer shell.

- Fluorine Chlorine
- points, low density

F

CI

• Diatomic molecules – F₂, Cl₂, Br₂

Reactivity:

Group 7 – The Halogens:

Group 7 – all have 7 electrons in their outer shell.

2.7 2.8.7

• Non-Metallic properties – poor conductors, low melting/boiling

• The elements get **more reactive as you go up** the group

Outer shell gets nearer to the nucleus so easier to gain one electron.

• A more reactive halogen displaces a less reactive halide ion

chlorine + potassium → potassium + bromine chloride

• Fume cupboard used for reactions – halogens produce toxic

• Chorine – water supplies, swimming pools, bleaches