1.3 – Chemical calculations II

5. Empirical and molecular formulae

Molecular formula: The actual number of atoms of each element present in the molecule.

Empirical formula: The simplest whole number ratio/proportion of elements present.

Example: A hydrocarbon (M_r 58) contains 4.80 g carbon and 1.01 g hydrogen. Calculate the empirical formula and molecular formula of the hydrocarbon.

		С	Н		
Moles $\left(\frac{Mass}{A_r}\right)$		<u>4.80</u> 12.0	<u>1.01</u> 1.01		
		0.40	1.00		
Divide by the smalle	r	0.40	1.00		
		0.40	0.40		
	\rightarrow	1	2.5	do not round up!	
Multiply by two to get whole numbers					
	\rightarrow	2	5		
Empirical formula	\rightarrow	C_2H_5			
Mass of empirical formula = (2 × 12.0) + (5 × 1.01) = 29.05					
Number of units in a molecule = $\frac{58}{29.05}$ = 1.992 \approx 2					

Molecular formula $\longrightarrow 2 \times \text{empirical formula} \longrightarrow C_{a}H_{10}$

Note: You can also use an empirical formula style calculation to find χ in a water of crystallisation calculation.

6. Volumes of gases

At standard temperature and pressure (stp) [273 K, 1 atm] one mole of any gas occupies a volume of 22.4 dm³. This value is called the molar gas volume (V_{m}).

Example: What volume of hydrogen is formed, at stp, when 6.00 g of zinc reacts with excess sulfuric acid?

 $Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2$

Step 1 – Calculate the moles of the substance you have information about – zinc in this case.

moles zinc =
$$\frac{6.00}{65.4}$$
 = 0.0920 mol

Step 2 – Use the balanced equation to find out the mole ratio of zinc to hydrogen and deduce the moles of hydrogen formed.

1 mol Zn : 1 mol H₂

→ 0.0920 mol Zn : 0.0920 mol H₂

Step 3 – Calculate the volume of this number of moles of hydrogen gas at stp.

volume of hydrogen = $0.0920 \times 22.4 = 2.061 \text{ dm}_3$

Note: Molar gas volume is 24.5 dm³ at 25°C (298K) and 1 atm - room temperature and pressure (rtp).

7. Changes of conditions affecting gases

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

If a gas that was originally at \mathbf{p}_1 , \mathbf{V}_1 and \mathbf{T}_1 has a condition changed, e.g. temperature, then the above equation can be used to see how another factor changes, e.g. volume.

p is pressure and V is volume (for this equation it does not matter which units are used as long as they are the same for $_1$ and $_2$). T is temperature (you must change °C into K (+273).

If a question states, for example, that the temperature remains the same then you can use $\mathbf{p}_1 \mathbf{V}_1 = \mathbf{p}_2 \mathbf{V}_2$ to solve the calculation.

8. The ideal gas equation

In an ideal gas:

- the particles are of a negligible size
- the particles move with rapid, random motion
- · collisions between particles are perfectly elastic
- there are no intermolecular forces.

To use this equation, you must use the following units:

- $p \longrightarrow pressure \longrightarrow Pa \text{ or } Nm^{-2}$
- $V \longrightarrow volume \longrightarrow m^3$
- $n \longrightarrow number of moles \longrightarrow mol$
- R \longrightarrow molar gas constant \longrightarrow 8.31 J mol⁻¹ K⁻¹ (data booklet) T \longrightarrow temperature \longrightarrow K

Conversions:

1 kPa = 1×10^{3} Pa 1 atm = 1.01×10^{5} Pa (data booklet) 1 cm³ = 1×10^{-6} m³ 1 dm³ = 1×10^{-3} m³

Example: Calculate the number of moles in 200 cm³ of a gas at 25°C and at a pressure of 100 kPa.

p = 100 kPa \longrightarrow 100 × 10³ Pa V = 200 cm³ \longrightarrow 200 × 10⁻⁶ m³ T = 25°C \longrightarrow 298 K

$$pV = nRT \longrightarrow n = \frac{pV}{RT}$$

 $n = \frac{(100 \times 10^3) \times (200 \times 10^6)}{8.31 \times 298}$

n = 0.808 mol (correct to 3 sig. figs)

Note: A zero does not count as a significant figure until it has a non-zero number in front of it.

9. (

moles = v

Example: During a hydrochloric acid w hydroxide solution hydroxide solution

Step 1 – Calculate

moles HCI

```
= \frac{2}{1}
Step 2 – Use the
```

```
HCI to NaOH and
```

```
1 mol HCl :

→ 0.012
```

```
Step 3 – Calculate
```

```
concentrat
```

10. Convertin

g di

11. Ato

atom econ

Note: Don't forget

percentag

Note: Often the th and will need to be

An error is usually apparatus. In cher between two valu half a division, ad

Burette: Error of C

Example: What is the percer is measured from a burette?

percentage

Note: Percentage errors decrease as the amount measured increases, so using larger amounts decreases the percentage error.

wjec cbac				
Calculations involving solutions				
volume (dm ⁻³) × concentration (mol dm ⁻³)				
a titration, 25.00 cm ³ of 0.500 mol dm ⁻³ I was exactly neutralised by 35.00 cm ³ of sodium m. Calculate the concentration of the sodium m.				
HCl + NaOH \longrightarrow NaCl + H ₂ O				
te the moles of the substance you have ut – hydrochloric acid in this case.				
$I = \frac{volume (cm^3)}{1000} \times concentration$				
$\frac{25.00}{1000} \times 0.500 = 0.0125 \text{ mol}$				
balanced equation to find out the mole ratio of deduce the moles of NaOH that reacted.				
: 1 mol NaOH				
25 mol HCl: 0.0125 mol NaOH				
te the concentration of sodium hydroxide.				
tion of NaOH = $\frac{moles}{volume (dm^3)} = \frac{0.0125}{0.035}$				
= 0.357 mol dm ⁻³				
ng a concentration from mol dm ⁻³ to g dm ⁻³				
dm ⁻³ = concentration (mol dm ⁻³) × M_r				
om economy and percentage yield				
nomy = $\frac{mass of required product}{total mass of reactants} \times 100$				
t to use any associated balancing numbers.				
$pe yield = \frac{mass of product obtained}{maximum theoretical mass} \times 100$				
heoretical mass is not given directly in the question be calculated.				
12. Percentage error				
ly taken as half of the smallest division on the emistry, we usually measure the difference ues so that we have two readings with an error of dding up to an overall error of one division.				
0.05 cm ³ per reading so overall error 0.1 cm ³ .				
a burette?				

$$e error = \frac{0.1}{24.30} \times 100 = 0.41\%$$