## 4.3 Alcohols and phenols

# Formation of alcohols

#### 1. From halogenoalkanes

This is a nucleophilic substitution reaction. Reflux halogenoalkane with an aqueous solution of alkali (usually NaOH). For example:

CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Br + NaOH → CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH + NaBr

$$CH_{3} - CH_{2} - CH_{2} \xrightarrow{\delta^{+}} \overset{H}{\underset{H}{}} \xrightarrow{C} \overset{G}{\underset{Q}{}} \xrightarrow{\delta^{-}} CH_{3} - CH_{2} - CH_{2} - \overset{H}{\underset{H}{}} \xrightarrow{C} \overset{H}{\underset{Q}{}} \xrightarrow{C} H$$

#### 2. From carbonyl compounds

This is a reduction reaction. It is the reverse reaction of oxidation of alcohols studied in Unit 2.

Aldehydes and ketones are reduced using NaBH<sub>4</sub>, sodium tetrahydridoborate(III), dissolved in water. The reducing agent is represented as [H] in an equation. Aldehydes produce 1° alcohols and ketones produce 2° alcohols.

$$\bigcirc -c_{\bigtriangledown_{O}}^{\neq_{H}} + 2[H] \rightarrow \bigotimes_{H}^{H} - OH$$

phenylmethanal (benzaldehvde)

phenylmethanol

$$CH_3 - C - CH_2 - CH_3 + 2[H] \rightarrow CH_3 - CH_3 - CH_2 - CH_3$$
  
 $OH$   
 $OH$   
 $OH$   
 $OH$ 

NaBH<sub>4</sub> is not powerful enough to reduce carboxylic acids. LiAlH<sub>4</sub>, lithium tetrahydridoaluminate(III), dissolved in ethoxyethane, a stronger reducing agent, is used instead.

$$CH_{3}C \bigvee_{OH}^{0} + 4[H] \longrightarrow CH_{3}CH_{2}OH + H_{2}O$$

Reduction using NaBH<sub>4</sub> is safer due to the nature of the reducing agent and its solvent.

### **Reactions of alcohols**

#### 1. With hydrogen halides

Slow and reversible reactions with poor yields.

The method depends on the halogen.

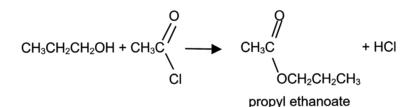
To produce a chloroalkane, pass HCl gas through alcohol with dry ZnCl<sub>2</sub> as a catalyst.

$$\begin{array}{c} \mathsf{HCI} \\ \mathsf{CH}_{3}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{OH} \xrightarrow{} \mathsf{HCI} \\ \hline \\ Zn\mathsf{CI}_{2} \end{array} \xrightarrow{} \mathsf{CH}_{3}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}$$

Chloroalkanes can also be produced using phosphorus pentachloride, PCI<sub>5</sub>. Phosphorus(V) oxide trichloride, POCI<sub>3</sub>, and hydrogen chloride also form in the reaction. Separation can be difficult if the halogenoalkane produced has a similar boiling temperature to POCI<sub>3</sub>.

Another method is to use sulfur(VI) oxide dichloride, SOCl<sub>2</sub>. The co-products, SO<sub>2</sub> and HCl are gaseous, so are easily lost from the reaction mixture.

To produce a bromoalkene, carry out an 'in situ' reaction. Heat a mixture of the alcohol, KBr and 50% H<sub>2</sub>SO<sub>4</sub>.

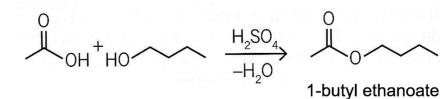

CH<sub>3</sub>CH<sub>2</sub>OH + KBr + H<sub>2</sub>SO<sub>4</sub> → CH<sub>3</sub>CH<sub>2</sub>Br + KHSO<sub>4</sub> + H<sub>2</sub>O

To produce an iodoalkane, use warm damp red phosphorus and iodine which forms phosphorus(III) iodide, PI3.

### 2. With ethanoyl chloride

An alcohol reacts rapidly with ethanoyl chloride, CH<sub>3</sub>COCl, forming an ester, and misty fumes of HCl are given off.

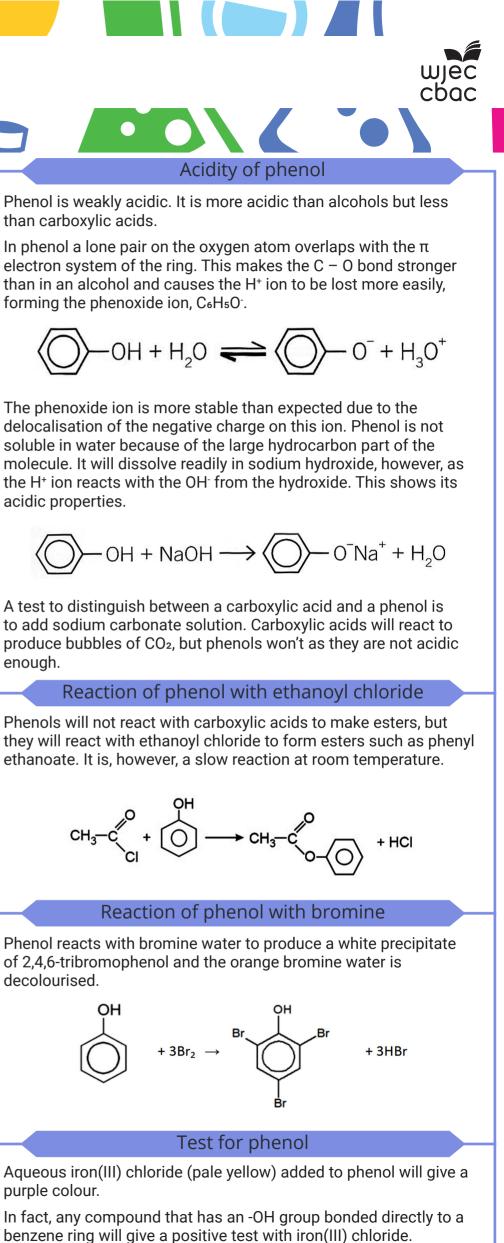
This method gives a better yield of ester than by using carboxylic acid as it's not a reversible reaction. However, it is not cost effective in industry, as acid chlorides are expensive.



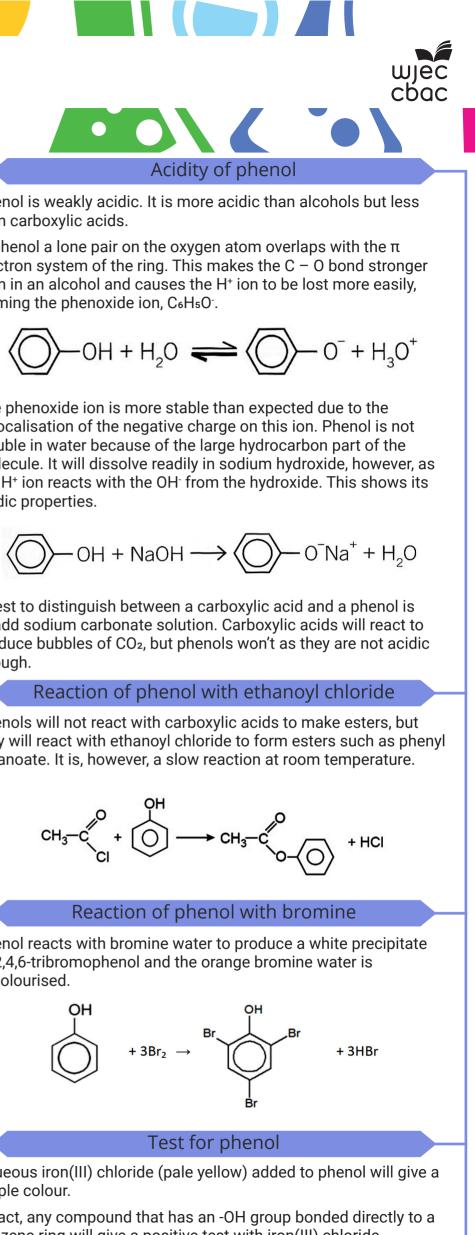

#### 3. With carboxylic acids

The reactants are refluxed together with a concentrated H<sub>2</sub>SO<sub>4</sub> catalyst. The products are distilled, and the ester collected at its boiling temperature.

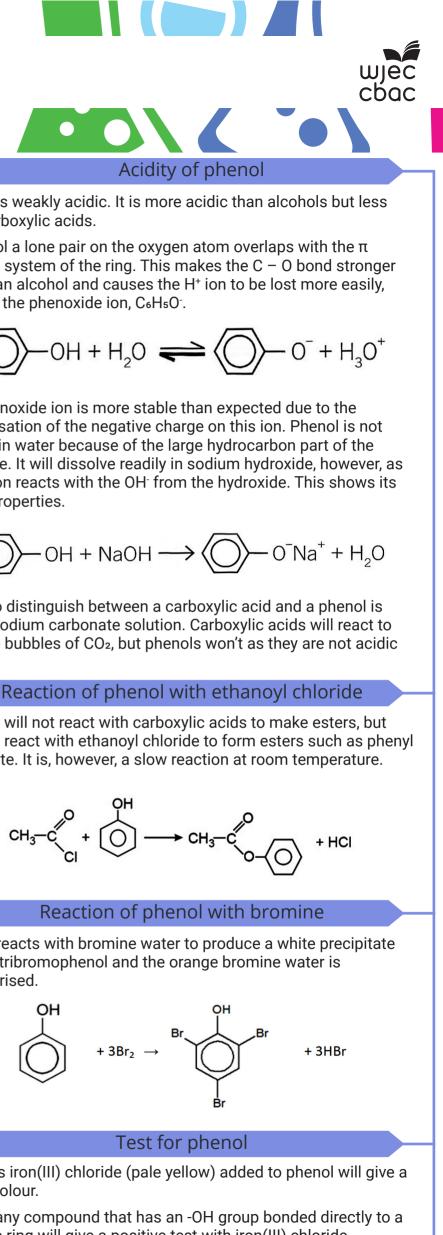
The immiscible ester layer is removed using a separating funnel and NaHCO<sub>3</sub> (aq) is added to neutralise any remaining carboxylic acid.


The ester is dried with anhydrous CaCl<sub>2</sub>, which reacts with any remaining alcohol. The ester can then be redistilled to give a pure product.

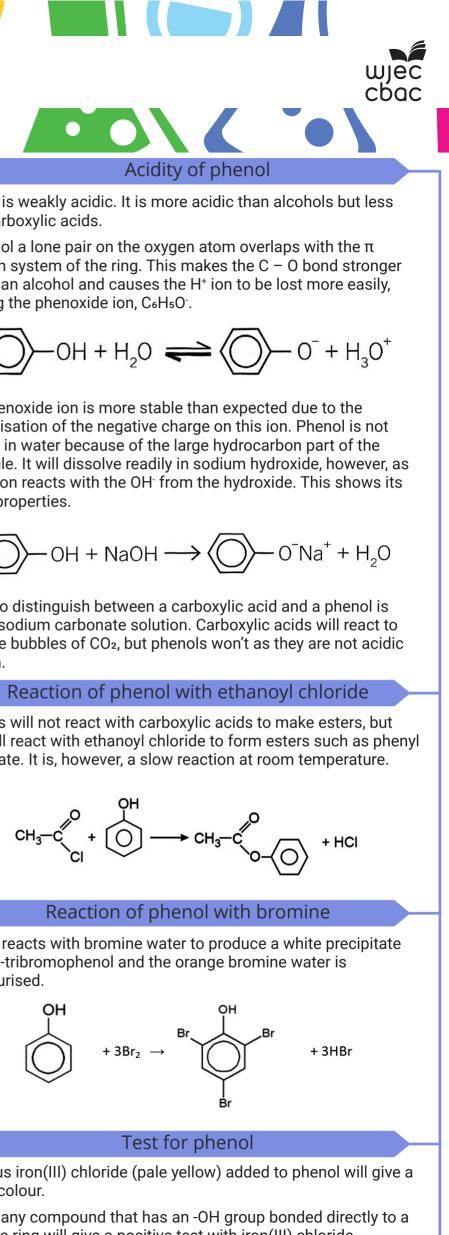



### Naming phenols

Phenol is an aromatic compound with an -OH group bonded directly to a benzene ring. If other groups are bonded to the benzene ring, the compound is named according to the position of the substituted aroup, with the phenol aroup bonded to carbon 1







acidic properties.



enough.



decolourised.



purple colour.

2-chlorophenol