GCE Physics Unit 1.7 Particles and Nuclear Structure Matter is composed of atoms, but within the atoms there are sub atomic particles. Therefore, **all matter is composed of quarks and leptons.** | | leptons | | quarks | | |----------------------|------------------|--|-----------|-------------| | particle
(symbol) | electron
(e-) | electron
neutrino
(v _e) | up
(u) | down
(d) | | charge
(e) | -1 | 0 | + 2/3 | - <u>1</u> | This table of information will be given on the **data booklet**, but it is important to know how to use this information. Note that these are the first generation of leptons and quarks, there are **three generations** but questions will only be asked about the first. # **Antiparticles:** Each of the particles has an equivalent antiparticle. Each antiparticle has the **same properties** as its equivalent particle **except opposite charge**. | | antileptons | | antiquarks | | |----------------------|--------------------------------------|-------------------------------------|------------------|-------------------| | particle
(symbol) | Antielectron or positron (e+) | Antielectron neutrino (\bar{v}_e) | antiup
(u) | antidown
(d) | | charge
(e) | +1 | 0 | - 2 3 | + 1/3 | When a particle and its antiparticle meet, they annihilate each other, often energy in the form of photons, γ . **Leptons** always exist separately. Their important features are: - Charge: electrons have a charge of -1e, neutrinos have no charge. - Lepton number: leptons have lepton number = 1, antileptons = -1 #### **Hadrons:** Quarks don't exist in isolation; they are always bound into particles made up of more than one quark. They are known as hadrons and there are 3 types. - **Baryon** combination of 3 quarks. For example, a neutron. - Antibaryon combination of 3 antiquarks. For example, an antiproton. - Meson 1 quark antiquark pair. # **Baryons and antibaryons:** All quarks have baryon number = $+\frac{1}{3}$ and all antiquarks have baryon number = $-\frac{1}{3}$. This means that all baryons must have baryon number = 1 and antibaryons = -1. Two baryons you must be familiar with are protons and neutrons. | | proton | neutron | |-------------------|--------|---------| | charge /e | +1 | 0 | | baryon number | 1 | 1 | | quark composition | uud | udd | You must also be able to work out the quark made up of less familiar baryons, for example Δ ++ = uuu. ### **Mesons:** There are 4 mesons that can be made up of the firstgeneration quarks and antiquarks, they are known as pions. As they are made of quark antiquark pairs their baryon number = 0. | | u | d | |---|------------------------|----------------------| | ū | u <mark>u</mark>
πº | u d
π | | d | ud
π⁺ | d d
πº | | The charge of each pion is shown by the symbol. | | | #### Forces: There are 4 fundamental forces involved in interactions between particles. | Interaction | Experienced by | Range | Comments | |--------------------------|----------------------------|---------------|---| | gravitational | all matter | infinite | very weak –
negligible except
between large
objects such as
planets | | weak | all leptons, all
quarks | very
short | only significant when
the e-m and strong
interactions do not
operate | | electromagnetic
(e-m) | all charged
particles | infinite | also experienced by
neutral hadrons, as
these are composed
of quarks | | strong | all quarks | short | | #### **Interactions:** In all interactions there are conservations laws that must be true. - · Conservation of charge. - Conservation of baryon number. - Conservation of lepton number. # **Strong interactions** (lifetime 10⁻²⁴s) - Only involve hadrons. - No change in quark flavour, (the same number of u and d quarks before and after). - Typically involved in collision between particles. ## **Electromagnetic interactions** (lifetime 10⁻¹²-10⁻¹⁸ s) - The particles must be charged or have charged components. - No change in quark flavour. - One or more photons may be emitted. ## Weak interactions (lifetime 10⁻¹⁰ s) - Neutral leptons are involved. - There may be a change in quark flavour.