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These notes have been authored by experienced teachers and are provided as support to 
students revising for their GCE A level exams.  Though the resources are comprehensive, 
they may not cover every aspect of the specification and do not represent the depth of 
knowledge required for each unit of work. 
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Section 3.1 - Circular Motion 
 
Some basic definitions 

 

 
Frequency, f 
 

 
The frequency of an oscillating system is defined as the number of oscillations per second, and 
hence for a rotating system, it is defined as the number of revolutions per second. 
 

The S.I. unit for frequency is the Hertz, Hz. 
 

It is also, of course, acceptable to use the unit per second, s-1, although for rotating systems it is 
more convenient to state the number of revolutions per second, or revs s-1. 
 
Example 
A drill rotates at 600 rpm (revolutions per minute). What’s the frequency of rotation? 
 
f  =  600 rpm  =  600 / 60    revs per second  =  10 s-1  or   10 Hz 
 
Period, T 
 

The period of an oscillating system is defined as the time taken to complete one complete 
oscillation.  
Similarly, the period of a rotating system is defined as the time taken to complete one revolution. 
 

The S.I. unit for period is therefore the second, s. 
 
The relationship between the period and frequency is very simple,  
as the comparison of their respective units implies:    
 
 
Angular velocity, ω  (Other names : angular speed, angular frequency, pulsatance) 
 

If a particle is moving in a circular path at a steady speed, then it will rotate through an angle, θ in a 
time, t. 
 
The angular velocity is defined as the angle swept out by the radius in unit time: 
 
 
 
 
 
Hence the S.I. unit for ω is   rad s-1. 
 
A specific case   :    When  θ  =  2 π    (i.e. one full circle) , then  t = T   (the period), and hence, 
 
     
 
                                                        …. and hence… 

θ r 

v 

v 

f = 1 
      T 
       

ω    = θ 
          t 
       

ω    = 2π 
          T 
       

ω    = 2πf 
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The radian 
 

The radian is another unit for measuring angles. It is defined as follows: 
 

If a particle moving in a circle moves a distance, d, equal to the radius along 
the circumference, then the angle rotated through is equal to one  radian, or 1 
rad. 
 
hence,   

 
To convert between radians and degrees we must reduce one side of the above relationship to 
unity, e.g. 
 
Converting degrees to radians  2 π    rad  =      1˚           
      360    
 
Converting radians to degrees    1    rad  =      360 ˚                                (about 57.3 ˚) 
                     2 π   
Example 
What’s 1.4 radians in degrees?    1  rad  =   360 ˚ / 2 π      ∴   1.4 rad = 1.4 x (360/2π)  =  80.2 ˚ 
 
What’s 30˚ in radians?   1˚  = 2 π/ 360   rad ∴   30˚ = 30 x (2 π/ 360) = 0.52 rad      (or π /6  rad) 
 
Relationship between velocity and angular velocity 
 

The speed of any moving particle is given by the equation,        
 

Speed,  v  =  distance / time 
 

If we apply this to a particle moving in a circle, we have, 
 
   v   =    arc length     =    r  θ        =   r  ω                  (since   θ / t  =  ω ) 
      time      t 
 
      where  ω = angular velocity 
 
Centripetal acceleration 
 

Newton’s first law states that if a particle is at rest it will remain stationary, or if already moving, 
will continue to move with constant velocity, unless acted upon by an external force.  
So, for the velocity (which is a vector) to be constant, it is required that the speed is constant and 
that there is no change in direction. 
 
Hence, if a particle is moving at a steady speed but following a circular path, then it must be 
accelerating, since the velocity is constantly changing its direction. The direction of this acceleration 
is always towards the centre of the circle. Whatever causes this acceleration, it can always be 
referred to as the centripetal acceleration, and is calculated thus: 
 

   a  =  v2   or    a  =  ω2 r 
           r 

θ r 

d   

2 π (rad)   =       360 (°) 
       

v   =   r  ω      
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Centripetal force 
 

 
Acceleration is only possible if there’s a resultant force. The acceleration experienced by a body 
that’s rotating can be caused by many different types and combinations of force. However, 
remember that the resultant force, ΣF = ma. In this context, this resultant force is called the 
centripetal force, is always directed towards the centre of the circle, and since   a  =  v2 / r or       
a  =  ω2 r 
 
the centripetal force,  FCP (or ΣF)  =  m a  =  m  v2 / r        or       FCP  =  m a  =  mω2 r  
 
Here are two examples of forces combining to create the necessary centripetal force: 
 

1) A roller coaster doing a ‘loop the loop’ 
 

At the very top of the loop, there are two forces contributing to the  
centripetal force in this instance – the weight of the roller coaster, W,  
and the normal reaction from the track, NR, both acting downwards,  
hence, 

 
FCP    =   W  +  NR               directed (downwards) towards the centre of the loop 
 
Either  ‘mv2/r’ or ‘mω2r’ can be substituted for ‘FCP’. 

 
 

2) A child standing on a playground ‘merry-go-round’ 
 

Although gravity acts on the child, her weight doesn’t  
contribute to the centripetal force since the weight  
acts vertically downwards. The centripetal force  
always acts towards the centre of the circle, which 
in this case, is directed horizontally. 
Therefore, the only force acting that causes  
circular motion is the friction between the child’s 
feet and the surface of the merry-go-round: 
 
 FCP  =   Friction   directed horizontally towards the centre 
 

Example 
In the 2nd example above, the maximum friction that the child’s feet can generate is 114N. 
Her mass, m, is 32.5kg. Given that she is 1.72m from the centre, calculate: 
(a) the maximum angular velocity that’s possible so that the child remains on the ride, 
(b) the minimum rotational period relating to part (a) above. 
 
(a)  FCP  =   Friction, hence,   m 𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎

𝟐𝟐  r  =  114 
 
      ∴ 𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎    = �𝟏𝟏𝟏𝟏𝟏𝟏 / (𝟑𝟑𝟑𝟑.𝟓𝟓𝟓𝟓𝟓𝟓.𝟕𝟕𝟕𝟕)    =  1.43 rad s-1 
 
(b) Tmin  =  2 π /  𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎  =  4.4s 
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Section 3.2 -  Vibrations 
 
Simple Harmonic Motion (SHM)  
 

There are many types of vibrations but perhaps the most common is that which is known as simple 
harmonic motion. It is important not only because there are many examples of it but also because 
all other vibrations can be treated as if they are composed of two or more simple harmonic 
motions.  
 

SHM is defined as follows: 
  

An object is said to be exhibiting SHM if that object moves such that its acceleration is always 
directed toward a fixed point and is proportional to its distance from the fixed point.  
Hence, 

a = – ω2 x 
 
 

where   a   =  acceleration (ms-2)    
ω   =  angular velocity (rad  s-1) ,    
x  =  displacement from equilibrium position (m) 

 
A graph of acceleration against displacement for a particle or system oscillating with SHM would 
therefore always take the following form: 
 
 
            What is the significance of this graph’s gradient ?  
 
          a  =  -  ω2  x 
 

         y  =     m    x 
 
           Comparing the 2 equations, it can be seen that, 
 
 
 
 
 
        Object moving ‘to and fro’ with SHM 
 
So, as the SHM object moves, 
its acceleration increases as it 
goes further from the  
equilibrium position. 

 
 
Thus, the acceleration is zero when x=0 m and the object is passing through the equilibrium 
position. The acceleration is a maximum when x is a maximum, i.e. when x = A  (where “A” is the 
amplitude). Hence,    

   amax =  - ω2 A 

acceleration 

displacement 

+ve 

+ve 

-ve 

-ve 

Gradient = - ω2 

Movement 
Equilibrium position, x = 0 

Amplitude = maximum displacement 
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Other equations that describe SHM 
The equation for the displacement, x, of the oscillating object at a certain time, t, is: 
 

but where does ‘t’ start?  Setting  t = 0,  x = A cos(0), hence, x = A. So, the 
‘stopwatch’ starts when the object is at maximum (positive) displacement. 

 
If we set the positive direction to the right in this case, 
then the ‘stopwatch’ begins when the particle is at the 
most extreme right, as shown . 
 
 
 
 
 
The corresponding equation for the velocity, v, of the object exhibiting SHM is then given by: 
 

 The ‘minus’ sign ensures that ‘v’ is negative for the first ½ of the  
 cycle…… 
 

 
 
…and then positive for the 2nd ½ of the cycle. 
 
Note that setting t=0 (at the far edge, where x=A), v = - Aω  sin(ωx0)  =  - Aω  x 0  =  0 , as expected. 
 

After ¼ of a cycle, the particle will be passing through the equilibrium position (in the negative 
direction). Setting time, t = T/4 gives us this answer from the equation also : 
 

  v  =  - Aω sin   ω x T    =    - Aω sin    2 π x T   =   - Aω sin (π/2)  =  - Aω      
          4                               T     4                         
which, of course, is the maximum value for 'v', as expected! 
 
 
 
 
 
Setting t = 0 at other positions  
 

You can choose to ‘start the stopwatch’ at any value of ‘x’, e.g. if  
we set t=0, when x=0, then we’re starting the stopwatch here  
 
The equations then become:    x = A sin (ωt),   and   v = - Aω cos(ωt) 
 

In general we add a ‘phase angle’, ε, to the angle ‘ωt’ in each of the original equations, when the 
time starts at any other position (in between x=0, and the extremities): 
 

x = A cos (ωt+ε)             and     v = - Aω sin (ωt+ε) 
 
Note : ε is an angle and is therefore measured in radians. 

Equilibrium position, x = 0 

time, t = 0 

NOTE !!   
The displacement is ALWAYS measured from the equilibrium position, regardless of where the ‘stopwatch’ is 
started. 

 
 
 

Positive direction 

velocity is negative 

time, t = 0 

NOTE !!          
The ‘ω’ in these equations is measured in radians per second, hence, you must have your calculator in ‘radians mode’ 
before you use ‘sin’ or ‘cos’ functions. 

 
 
 

x = A cos (ωt) 
 

v = - Aω sin (ωt) 
 

Equilibrium position, x = 0 

time, t = 0 
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A graphical representation of a, v, and x 
 

The three graphs shown below are always the same relative to each other, but the timing can start 
at any point during an oscillation.  
 
 
 

In this case the graphs are for a system,  
like the simple pendulum, where  
the timing would normally begin  
when the displacement is a  
maximum (when you ‘let go’ of the  
pendulum),i.e. when x = +A.  
 
 
 
 
 

As this is a positive displacement,  
then the velocity a fraction of a  
second after letting go would be  
negative. Hence the velocity graph  
is zero at the beginning but then  
gets increasingly negative. 
 
 
 
 
The acceleration-time graph is the  
inverse of the displacement-time  
graph since, in SHM, 
 

    a  α  - x 
 

Thus, when x is a maximum, a is a  
(negative) maximum. 
 
 
 
 
 
Here are all three graphs superimposed: 
 
 
 
 
 
 
 

displacement 
 

time 
 T 2T 

velocity (m/s) 

time 
 T 2T 

acceleration 
 

time 
 

T 2T 

acceleration 

time 
 T 2T 

displacement velocity 
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2 examples of SHM 
 
A) The simple pendulum 
 
     A pendulum length, 𝒍𝒍, will oscillate   
     approximately with SHM, as long as the 
     release angle, θ, is small.  
     (The smaller the angle the closer the  
      pendulum approximates SHM). 
      
     It can be shown (using the ‘small angle approximation’) that the acceleration experienced   
     by the pendulum bob, a, is given by: a  = -  g x  /  𝒍𝒍             ( g = acceleration due to gravity) 
 
     This completely satisfies the conditions for SHM ( a  α – x), as g and 𝒍𝒍 are constants in this case. 
     Comparing the equation above to the SHM equation, we can derive (derivation not required)      
     the equation for the period of oscillation of the pendulum: 
 
   a =  -  g   x 
     𝒍𝒍   leads to….   
    a = -  ω2  x 
 
 
B) Mass-spring system 
 
     A metal spring of original length, L, 
     and spring constant, k, is loaded  
     with a mass, m, causing an  
     extension, e. In accordance with  
     Hooke’s Law, the tension at equilibrium,  
     Teq  =  k e  =  mg. 

     When the mass is pulled down a further distance, x, it is no longer in equilibrium when  
     released, and will oscillate with SHM. The resultant force at the point of release is   
     ΣF  =  T  – mg                (‘T’ is the new tension relating to the total extension ‘e+x’).      
 

     It can be shown that: a  = -  k x  /  m              
 

     This completely satisfies the conditions for SHM ( a  α – x), as k and m are constants. 
     Comparing the equation above to the SHM equation, we can derive (derivation not required)      
     the equation for the period of oscillation of the system: 
 

    a =  -  k   x 
              m  leads to….   
 

    a = -  ω2  x 
 
 
    

θ 𝑙𝑙 

𝑻𝑻 =  𝟐𝟐 𝝅𝝅�
𝒍𝒍
𝒈𝒈

 

L 

e 
x 

In equilibrium,  
     Teq = mg 

𝑻𝑻 =  𝟐𝟐 𝝅𝝅�
𝒎𝒎
𝒌𝒌

 

BE AWARE !!   
Don’t mix ‘e’ with ‘x’ :      k e = mg  (at equilibrium)     and      k x = ma (during oscillations).  
Thus, if the mass is given, ‘k’ cannot be calculated with  “k e = mg” unless ‘e’ is given (rather than ‘x’).  
Hence, if corresponding values of ‘a’ and ‘x’ are given, e.g. from a graph of ‘a’ against ‘x’, then the second equation,  k 
x = ma, can be used to find ‘k’. The only other alternative to finding ‘k’ is the equation for T above. 
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Free Oscillations 
 

Free oscillations occur where the total energy of an oscillating system stays constant, but it changes 
between kinetic energy and potential energy. 

 
The diagram shows how the potential energy  
and kinetic energy vary with displacement for  
an object moving with SHM: 
 
Notice that the total energy remains constant 
as there are no resistive forces acting on the  
system in this case. 
 
 
In practice, the amplitude of the oscillations gradually becomes smaller and smaller unless the 
pendulum is supplied with energy. Air resistance is one reason why the amplitude decreases 
gradually. For example, for the case of a pendulum, collisions between the bob (&string) and the air 
molecules transfer kinetic energy from the bob to the air molecules. This gradually reduces the 
energy of the SHM system, whilst raising the thermal energy of the air particles. 
 
 
Damping 
 

In most oscillating systems, resistive  
forces gradually reduce their total energy.  
This is known as damping,  
i.e. the system is said to be ‘damped’. 
 
Here’s a graph of an oscillating system that  
is exhibiting ‘light damping’ 
 

Note that the period would be unchanged as compared to the same system with no damping.  
 
 

Heavy damping occurs when the resistive forces  
are significantly greater. The oscillating system is  
barely able to complete one cycle. 
 

Notice that the period is significantly increased 
as compared to the lighter damping seen above. 
 
When a system returns to the equilibrium position 
in the least time possible, where the displacement 
never becomes negative (no ‘overshoot’), the 
damping is said to be critical. 
 
Finally, a greater increase in damping will cause the  
system to take a long time to return to equilibrium  
– overdamping.   

displacement (m) 

time (s) 

displacement (m) 

time (s) 

displacement (m) 

time (s) 
displacement (m) 

time (s) 
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Examples of damping 
 

Light damping 
There are many examples, including:  a bungee jumper;  
a child on a swing after the ‘pusher’ stops pushing;  
any freely oscillating pendulum; a vibrating string on  
a musical instrument.  
 
             Heavy damping 
              Swinging doors e.g. in a restaurant, are   
             often designed to ‘overshoot’ a little before  
             coming to a rest; a (coiled spring) bed  
             mattress allows a little ‘oscillation’ (as seen   
             when a child uses it as a trampoline!);  
             a ‘bouncy castle’.     
 
 
Critical damping 
This is the most precisely-defined type of damping,  
but there are many examples due to its importance  
in engineering: car and bike suspension systems;  
speedometer and rev. counter needles in vehicles;   
artillery recoil mechanisms; robotics (impact/unexpected  
motion control); some door closing mechanisms 
 

             
Overdamping 
Earthquake protection in skyscrapers; school/office door closing 
mechanisms; car boot opening systems 
 

 
 
Critical damping 
 

Mountain bike (as well as car) suspension systems are  
generally designed to be very close to a critical damped  
system. This is so that if the bike hits a bump or small  
rock, or if landing after ‘catching a little air’, then the  
landing isn’t so hard that it hurts the wrists/arms/legs  
of the cyclist (overdamped), but also isn’t too soft so  
that the bike and biker bounce up and down a few  
times after impact (light to heavy damping).  
 

The biker thus regains control as quickly as possible. 
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Resonance 
 

The natural frequency of a system is the frequency at which it oscillates without any force applied. 
 

If a system is acted upon by a sinusoidally varying oscillating force, it will be forced to vibrate at 
the forcing frequency.   
 

If the forcing frequency is equal to the natural frequency of the system, each push will build up the 
amplitude further. If there were no damping to dissipate energy, then the amplitude of vibration 
would increase continuously as the system absorbed energy from the driver. This effect is called 
resonance. 
 
The graph below shows a typical ‘resonance curve’ where the oscillating system is forced to 
oscillate at various frequencies. The ‘response’ is how large the resulting amplitude is. There’s a 
‘maximum response’ when the forced frequency equals the natural frequency of the system. 
 

With no damping, the amplitude and energy of  
the system will increase continuously. 
 

With damping, the amplitude and energy will  
increase until energy is being dissipated at the  
same rate as it is being supplied. 
 
 
Effect of damping on natural frequency. 
 

Increasing the amount of damping on a system has 
three effects: 
 

• The amplitude of the peak oscillation  

decreases. 

• The resonance peak gets broader. 

• The frequency at which maximum  

response occurs also decreases. 

 
The decrease in amplitude and frequency  
are more marked with heavier damping.  
 
Examples of resonance 
1) A microwave oven 
 

The natural frequency of oscillation of water molecules is around 1 x 1011 Hz. 
This coincides with the frequency of the microwave region of the EM 
spectrum. When water molecules are bombarded with microwaves (forcing 
frequency) the microwaves are readily absorbed, increasing the amplitude of 
oscillation, i.e. the water heats up.  
 
 
 
 

Notice that 
the resonant 
frequency 
decreases as 
the damping 
becomes 
heavier. 

Forced Frequency (kHz) 

Amplitude 

 O 

 H  H 

NOTE !!        
In reality, the frequency of the microwaves are off-resonance, since if they matched too closely, the heating process 
is so efficient only the outside layer of the food product would be heated! 
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2) Circuit tuning (radio receiver) 
 

In an AC circuit, the resistance of the circuit as a whole (impedance) depends on the frequency of 
the supply voltage. Thus, there’s a certain minimum resistance value (maximum current) at a 
specific frequency. This ‘resonant frequency’ depends on the values of the capacitor and the 
inductor in that circuit. When a wide range of radio waves (forcing frequency) are detected by an 
antenna, only the radio signals very close to the ‘natural frequency’ of the circuit cause resonance. 
Thus, different radio station signals can be picked up with each 
specific value of the capacitor/inductor. 
 
3) The Millennium bridge, London (undesirable resonance) 
 

To celebrate the year 2000 a footbridge was built in London.  
Unfortunately, the pedestrians walking along the bridge caused  
the bridge to oscillate (forcing frequency) at the natural  
frequency of the bridge. This inevitably led to large  
oscillations (resonance). The bridge was promptly closed,  
and extra struts were added that significantly changed the  
natural frequency of the bridge! (A similar, disastrous  
example is the 1940 Takoma bridge incident, although  
the mechanism was ‘flutter’ which is slightly different). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Millenium bridge, London 
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Section 3.3 -  Kinetic Theory 
 
Overview 
 
The next three sections are a great example of experimental and theoretical physics combining. The 
first section describes the relationship between the pressure, volume and temperature of a gas 
(ideal in nature) as observed in real, practical investigations. 
The second section describes an equation relating p, V and molecular speed, but is derived from a 
purely theoretical approach. The two are then combined to show that the temperature of a gas is 
directly proportional to the average kinetic energy of the particles.   
 
The Equation of State (aka The Ideal Gas Equation) 
 

The following  relationships were found by experiments: 
 

  pV = constant          (Boyle/Mariotte’s law) 
 

  𝑉𝑉
𝑇𝑇

   = constant           (Charles’ law) 
   

and  𝑝𝑝
𝑇𝑇

   = constant           (Gay-Lussac’s law) 
   
where   p =  pressure (pascal, Pa, or N/m2);   V = volume (m3) ;   T = temperature (kelvin, K) 

 
Therefore the three equations can be summarised by one equation,   
 

 
or, alternatively, 
 
 

The value of the constant depends on the mass of the gas. Experiments with real gases at low 
enough pressures show that the constant is the same for all gases if one mole is considered. The 
constant is called the universal molar gas constant, R, whose value is, R = 8.31 J mol-1 K-1. Hence: 
 
 
     where  n = number of moles  
 
 
This is known as the ‘equation of state’, or the ‘ideal gas equation’. As the latter name suggests, it 
only really works for an ‘ideal gas’, but works very well for many real gases as long as the 
temperature and pressure aren’t too extreme.  
 
 
 
 
 
 
 

No knowledge 
of these 

individual laws 
is needed for 

the exam. 

 

p1V1   =   p2V2 

    T1            T2 

 

p V = n R T 

NOTE!   There are a few ‘assumptions’ or behaviours exhibited by an ideal gas: 
 

1) Collisions are perfectly elastic, so particles bounce off the container and off each other without 
losing any kinetic energy. 

2) The gas particles exert forces on each other only when they collide. 
3) The gas particles are so tiny they take up no space at all (i.e. negligible volume). 

 
 
 

 p V = constant 
  T 
      



15 
 

Alternative version 
 

Sometimes, the number of particles, N, may be given rather than the number of moles, n.  
In this case, we use the equation for n: 
 

  n  =  
𝑵𝑵
𝐍𝐍𝑨𝑨

    such that    p V = n R T  =   
𝑵𝑵
𝐍𝐍𝑨𝑨

 R T 

                   
However, R and the Boltzmann’s constant, k, are related:   k = R / NA ,  hence: 
 
 
        where  k = 1.38x10-23 JK-1 
 
 
Kinetic Theory 
 

The second equation relating the pressure, p, and volume, V, of a gas, with the average square  

speed, c2, of the gas particles, is derived from a purely theoretical approach. In order to be able to 
apply fairly simple equations such as Newton’s 2nd law (F = δmv / δt), the gas sample being 
modelled must also be simple, and so many assumptions are made as the foundation on which the 
relationship is derived. (Some of these are also seen as the assumptions for an ideal gas): 
 

1. The intermolecular collisions are perfectly elastic,  
as well as collisions with boundaries. 

 

2. Repulsive forces only exist when the particles are  
close enough, i.e. when they collide. 

 

3. The volume of the molecules themeselves can be  
neglected compared to the volume occupied by the gas. 

 

4. The time taken for a collision is negligible compared with the time spent by a molecule 
between collisions. 

 

5. A molecule moves with uniform velocity between collisions. 
 

6. There is a large number of molecules even in a small volume, with a large number of 
collisions in a small time. 

 

7. The motion of the molecules is evenly distributed over all directions. 
 

8. The range of intermolecular forces (both attractive and repulsive) is small compared to the 
average distance between molecules. 
 

9. There is a random distribution of energy among the particles. 
 
The equation derived from this ‘model’ is then: 
 
where  p = pressure (N/m2),       c2  =   mean square speed (m2s-2),  and  
 

  ρ = density (kgm-3)   =     total mass of gas      =  MT  =  N m 
       total volume of gas         V          V 
where   N = number of particles in the gas,    m = mass of each individual particle 

 

p V = N k T 

Also assumptions 
for an ideal gas! 

 

p  =  ⅓ ρ c2 
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Combining the two equations (experiment & theory) 
 

First, the equation for density, ρ, seen at the bottom of the previous page, is needed: 
 

 ρ = MT  =  N m            ∴   p    = ⅓ ρ 𝑐𝑐2���  =   ⅓ N m 𝑐𝑐2���   
         V          V            V 
 

    ∴   p V = ⅓ N m 𝑐𝑐2���     ------- Equ. [1] 
 
Here’s the ideal gas equation:      p V  = n R T      -------   Equ. [2] 
 
Since the left hand side of equations [1] and [2] are both ‘pV’, we can equate the right hand sides:  
 

     n R T    =   ⅓ N m 𝑐𝑐2���   
 

Multiplying by 3/2:          3
2
   n R T    =   1

2
  N m 𝑐𝑐2���   

 

Re-arranging the RHS:          3
2
   n R T   =   N x  1

2
  m 𝑐𝑐2���   

 
Since N = number of particles in the gas, and “ 1

2
 m 𝑐𝑐2��� ” = the mean kinetic energy of each particle,  

 

the RHS (N x  1
2
  m 𝑐𝑐2���) must equal the total kinetic energy of all the gas particles. 

 

Hence, for a monatomic gas, the total translational KE =   3
2
  n R T . Later, we will see that this is 

known as the ‘internal energy’ (for a monatomic gas), U. Hence: 
 
 
     or for 1 mole (n=1):  
 
 
 
We can re-arrange a little further: 
 

 3
2
   n R T   =   N x  1

2
  m 𝑐𝑐2���   

 
Dividing by N:   

3
2
   n R T   =     1

2
  m 𝑐𝑐2���              and since   n = N / NA  

         N 
 
          

3
2
   R T   =     1

2
  m 𝑐𝑐2���              and since   k = R / NA  

             NA 
 

     
 
 
 
 
In other words, the average KE of each particle =  

𝟑𝟑
𝟐𝟐
  k T,    where  k = the Boltzmann’s constant. 

 

 

U  =  3
2

 n R T 
 

U  =  3
2

  R T 

 

3
2
   k T   =     1

2
  m 𝑐𝑐2���   
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Examples 
 

1.  A gas cylinder contains 2.5x10-4 m3 of Helium at a pressure of 20 atmospheres  
     (1 atmosphere = 101 000 Pa). If there are 0.2moles of helium in the cylinder, calculate the  
     temperature of the gas. 
 

 Re-arranging  p V = n R T, gives      
 

 T = p V / n R  = (2 020 000)(2.5x10-4) / (0.2 x 8.31) = 309 K 
 
 
2. The table shows the distribution of molecular speeds among 15 molecules of an ideal gas. 
 
Number of molecules 2 4 5 3 1 
Speed (ms-1) 200 300 500 600 700 

 
   a) Calulate the mean square speed 𝑐𝑐2���. 
   b) Calculate the pressure exerted by the gas if 𝑐𝑐2��� for all its molecules is the same as that  
        calculated in part (a), and the density of the gas is 1.25 kgm-3. 
 
a) 𝒄𝒄𝟐𝟐���  =   (2x2002) + (4x3002) + (5x5002) + (3x6002) + 7002 =  3 260 000  =  217 333 m2s-2 
        15      15 
 

b) p    = ⅓ ρ  𝒄𝒄𝟐𝟐���  =  ⅓ x  1.25 x 217333 =  90 600 Pa  (3 s.f.) 
 
 
3. A vessel of volume 1.0 x 10-3 m3 contains helium gas at a pressure of 2.0 x 105 Pa when the  
    temperature is 300K. (Relative atomic mass of helium = 4) 
 

a) Calculate the number of helium atoms in the vessel. 
b) Calculate the mass of helium in the vessel, given that 1u = 1.66x10-27kg. 
c) Calculate the r.m.s. speed of the helium atoms.  
 
a)  n  =  pV / RT  =  0.080 mol      ∴  n = N / NA   gives   N = n x NA  = 0.080 x 6.02x1023 = 4.8x1022 
 
b)  (approximately) total mass, MT = N x m = N x (4u)  = 4.8x1022  x 6.64x10-27  = 3.2x10-4 kg 
 

c)  p  = ⅓ ρ  𝒄𝒄𝟐𝟐���  =   ⅓ MT 𝒄𝒄𝟐𝟐���         Hence,   𝒄𝒄𝟐𝟐���  =  3 p V  =  3 x (2x105) x (1x10-3) = 1 875 000 m2s-2 
       V              MT                  3.2x10-4  
 
   However, the question asks for “ROOT mean square speed” (r.m.s.), hence: 
 

 crms   =  �𝒄𝒄𝟐𝟐���  =  1370 ms-1  
 
 
 
 
 

NOTE!   
1) Don’t mix ‘M’ with ‘m’ (e.g. in questions like 3(b)).  
          MT = total mass of gas;   m = mass of an individual particle in the gas. 
         (Also, as in chemistry,  M = molar mass). 
 
 2) You can also find ‘MT’ in 3(b) by using the number of moles, and the molar mass (which you get from “relative 
atomic mass = 4”) – see next page! 
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Other definitions and equations needed 
 

The mole is defined thus: 
 
 
 
 
 
Avogadro’s constant is defined thus: 
 
 
 
 
Relative atomic mass 
 

The relative molecular/atomic mass, MR , is a number that states precisely how a molecule or 
atom’s mass compares to 1/12th the mass of a carbon-12 atom. Since its ‘relative’, it has no units. 
 

For example, for helium, MR (He) = 4.0026. However, this is often rounded to just ‘4’.  
 

This means that one atom of helium has a mass that is exactly 4.0026 times larger than 1/12th the 
mass of a carbon-12, i.e. approximately, it’s about 4 times more mass. This can be useful to find the 
mass of one mole of a substance, M, since the mole is defined in such a way so that, 
 
  
       (M has units of  kgmol-1) 
 
Example 
 
1) The relative molecular mass for oxygen, MR (O2) = 31.9988. Calculate the molar mass of O2. 
 

     M  = MR / 1000  =  31.9988 /1000  = 0.0319988 kgmol-1  
 
2) Taking the relative atomic mass of nitrogen as MR (N) = 14, calculate the mass of one mole  
     of atomic nitrogen. (Note: the ‘14’ is a rounded value). 
 
     M  = MR / 1000  =  14 /1000  = 0.014 kgmol-1                  
 
   Alternatively:   If MR = 14, this is a rounded, hence approximate, value. So, one atom of  
          nitrogen has a mass of (approx.) 14u. Since there are NA atoms in a mole,  
       the total mass of one mole of nitrogen (atomic) is approximately,  
 

     
M  =  NA x 14 u  =  (6.02x1023) x 14 x (1.66x10-27)  = 0.01399 = 0.014  kgmol-1         (to 2 s.f.) 
 
 
Also, remember that: 
 
 
where      MT  =  total mass of gas, M = molar mass 

The mole is the S.I. unit of an ‘amount of substance’. It is the amount containing 
as many particles (e.g. molecules) as there are atoms in 12 g of carbon-12. 

 

This is the number of particles per mole.  (NA = 6.02 x 1023 mol-1) 

 

M  =  MR / 1000 

 

n  =  
𝑵𝑵
𝑵𝑵𝑨𝑨

 
 

n  =  
𝑴𝑴𝑻𝑻
𝑴𝑴
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Section 3.4 - Thermal physics 
 
Internal energy 
 

The internal energy of a system is the energy of the molecules or atoms. It has two components: 
 

   (a) Kinetic energy due to; 

i. Translational motion of its molecules. 

ii. Rotational motion of its molecules. 

iii. Vibrational motion of its molecules. 

 

         All these forms of K.E. depend on the temperature. In a monatomic gas, e.g. Neon or Argon,  
         only translational K.E. is present. 
 
   (b) Potential energy due to intermolecular forces. 
  
In an ideal gas there are no forces between the molecules therefore there is no potential energy. 
Therefore the internal energy, U, of an ideal gas is wholly kinetic. Furthermore, if the gas is also 
monatomic (like Neon or Argon), then the KE is just translational, hence, 
 
     (as seen in section 3.2) 
 
 

 
Absolute zero is the temperature of the system when the internal energy is at a minimum.  
Note that although this coincides with zero KE, the PE may be negative – hence the term ‘minimum’ 
rather than ‘zero’. 
 
Flow of energy 
 

Energy can be transferred to or from a system as 1) heat or 2) work, and afterwards it is impossible 
to tell which form it took. For example, air in a bicycle pump can be heated either by compressing 
the piston or by transferring heat energy by conduction, convection or radiation. 
 
1. Flow of Heat 
 

Heat energy, Q, is the energy which flows by conduction, convection or radiation from one body to 
another because of the temperature difference between them. It is energy in transit, and not 
contained within the system.  
 

Heat will always flow from a body at high temperature to a body at a lower temperature. It will 
continue to flow until the two bodies are in thermal equilibrium.  
At thermal equilibrium, the systems in contact will be at the same temperature, therefore no heat 
will flow. 
 

2. Work 
 

Work is the energy that is transferred from one system to another by a force moving its point of 
application in its own direction. 

 

U  =  3
2

 n R T 
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Calculating work done 

It can be shown that if heat is introduced to a gas where the set-up is such that the pressure, p, 
remains constant (an isobaric change), the gas will do work (by expanding) in accordance with the 
following equation:    
 
     where  ∆V = change in volume (m3) 
      
 
 
In practise, the situation above is quite realistic 
and easy to set up. Place a good quality, glass 
syringe (very low friction) in a source of heat 
e.g. a Bunsen flame, and the heat that flows into 
the gas causes it to expand.  
 
 
It is often convenient to draw a graph of pressure, p, versus volume, V. These graphs are known as 
indicator diagrams. Here’s the indicator diagram for the situation above: 
 
 
             
 
        W = p ∆V  =  p (Vfinal – Vinitial)  =  p (V2 - V1) 
 
 
 
 
Notice that the work done is equal to the area under the graph. This is true even if the pressure is 
not constant. It is important, therefore, to remember this fact, as it is often needed in the exam.: 
 
 
 
Calculating the area under curved sections 
 

There are often curved sections to an  

indicator diagram. For example, a change 

in pressure and volume that occurs at 

constant temperature (an isothermal  
change) looks like this . 
 
If you’re asked to calculate the work done in this type  
of graph, the best you can do is an approximation.  
The area under the curved line is approximately equal  
to the area under one of the straight lines shown.  
The area below the graph is a trapezium, hence, 
Work  = Area =  (p1 + p2)  x  ∆V 
            2 

 

W = p ∆V 

Plunger allowed 
to move 

0 50 100 

Cork or 
rubber 
stopper 

Gas particles 

Bunsen burner 

Glass syringe 

pressure (Pa) 

volume (m3) V1 V2 

The work done is always equal to the area under the p-V graph 

pressure (Pa) 

volume (m3) V1 V2 P 

V 

Both lines ok, but the lower 
one is more accurate! 
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The 1st law of thermodynamics 
 

This is essentially the  conservation of energy applied to a contained gas system.   

 
 
    
In equation form: 
        or re-arranged… 
 
 
where, 
 
Q  = heat energy given to the system;      ΔU = change in internal energy of the system 
W  = work done by the system 
 
Positive or Negative? 
 

 
Q is + ve if heat is supplied to the gas, - ve if heat is transferred from it. 
 
W is + ve if external work is done by the gas (expanding);  – ve is work is done on it (compressing). 
 
ΔU is + ve if the internal energy increases, and – ve if the internal energy decreases. 
 
Examples (including changes of state that are : isobaric, isothermal, isovolumetric, and adiabatic) 
 

 
A) Constant pressure (isobaric) 
 
     Since the pressure doesn’t change, the work done  
     is easy to calculate with W = p ∆V. Applying the 1st law: 
 
 Q  =  ∆U  + W                  
 
  
B) Constant temperature (isothermal) 
 
     If, for example, the external pressure decreased, 
     the gas will expand. If this is done very slowly,  
     any slight decrease in the gas’ temperature  
     will cause heat to flow in to maintain thermal  
     equilibrium, hence,  ∆U = 0. Applying the 1st law: 
 
 Q  =  ∆U  + W                  
 
 
     Meaning, that all the heat entering the gas is used to do work by the gas as the piston moves  
     outward. 

Heat given to a system = Increase in internal energy of the system + Work done by the system 

 

Q  =  ∆U  +  W 
 

∆U   =  Q  -  W 

 

Q  =  ∆U  +  p∆V 

Frictionless plunger/piston 
allowed to move freely 

Heat 

 

Q  =   W 

Frictionless plunger/piston 
allowed to move freely 
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C) Constant volume (isovolumetric) 
 
    Since the volume doesn’t change, no work can be done by the gas, 
    hence,  W = 0. Applying the 1st law: 
 
    Q  =  ∆U  + W                  
 
    Meaning, that all the heat entering the gas converts to an increase in  
          Heat  the internal energy. 
 
 
D) No heat enters or leaves the system (adiabatic) 
 

     This is achieved by pushing in or pulling out the 
     piston very quickly. This means that heat doesn’t 
     have enough time to move in or out of the system,  
     hence, Q = 0. 
     In the case of pushing the piston in quickly, work  
     is done on the gas by an external force, and so , 
     the work, W is negative. Applying the 1st law:              Q  =  ∆U  + W        
 
 
     This means, that as ‘W’ has a negative value, there’s a double negative here, making the ∆U  
     value positive, which is what we would expect – suddenly pushing in the piston on a bicycle  
     pump would make the air inside the pump hotter (not colder)! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q  =  ∆U   

Frictionless plunger/piston pushed 
in quickly by an external force 

 

∆U  =  - W   

NOTE !!         
For liquids and solids, there’s very little change in volume, and so the work done is 
zero (or very close to it), therefore, applying the 1st law: Q  =  ∆U   
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Specific heat capacity 
 

This is a quantity that tells us the amount of heat needed to produce a temperature rise of one 
degree in one kilogram of a substance. It’s described in the WJEC definitions document as follows: 
 
 
 
 
 
Hence, the equation is: 
          where    Q = heat input (J);   m=mass (kg); 
          c = specific heat capacity (J kg-1 K-1);  
           ∆θ = change in temperature (K  or ˚C) 
 
Note that water has one of the highest values for specific heat capacity (cwater = 4200 J kg-1 K-1). 
 
 
Example 
Calculate the heat required to raise 120kg of water from 20˚C to 50˚C. 
 

Q = m c ∆θ   =   120 x 4200 x 30  = 1.512x107 J              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The heat required, per kilogram, per degree celsius or kelvin, to  
raise the temperature of a substance. Unit = J kg-1 K-1 . 

 

Q  =  m c ∆θ  
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Section 3.5 -  Nuclear decay 
 
Notations 

 

The 𝑋𝑋𝑍𝑍𝐴𝐴  notation is used to represent elements where, 
 

 A =   Nucleon number (total number of nucleons = protons + neutrons; aka mass number) 
 Z =   Proton number (aka, atomic number) 
 X =   Chemical symbol of the element  
 
It is important to remember that every element has a unique proton number (Z) which will not 
change. If the number of protons change, the element will change with it. 
 

However, the nucleon number (A) can change as the number of neutrons (N) can change. 
 
 
 
 

For example, 
     So, nucleon number   = 56  
            atomic number    = 26   (number of protons) 
       “Fe”    =  chemical symbol for ‘Iron’ 
             ∴ number of neutrons =  56-26  = 30 
 
Radioactive Decay 
 

Within the nucleus there are positively charged protons, 
which repel each other due to electrostatic repulsion. But as 
the nucleus does not blow itself apart, there must be another 
(attractive) force between the nucleons - this is the strong 
nuclear force. 
 

These two forces are balanced in a stable nucleus,  
but an imbalance makes the nucleus unstable.  
There’s a certain value for the neutron:proton  
ratio that makes the two forces in a nucleus  
balanced, and this ratio increases with heavier  
nuclei, as shown by the graph opposite . 
 

Radioactive decay is the process by which an  
unstable nucleus becomes more stable by  

spontaneously 
decaying into a daughter nucleus  
while emitting particles such as alpha or beta,  
and/or energy, e.g. gamma rays. 
 
Radioactive decay usually produces alpha and gamma, or 
beta and gamma. Sometimes just a gamma ray is 
emitted. (All three are shown together in the diagram on 
the left). 
 

An isotope is an element with the same number of protons, but a different number of neutrons. 
 

𝑭𝑭𝑭𝑭𝟐𝟐𝟐𝟐
𝟓𝟓𝟓𝟓  
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Properties of Alpha, Beta and Gamma radiation 
 

 

 alpha beta gamma 

Symbol α β γ 

What is it? Helium nucleus Fast electron EM wave 

Mass (u)  ~ 4  ~ 0.00055 0 

Charge (e) 2+ 1 - None 

Speed (% of c) ~ 10% 50-95% 100% 

Penetration Low Medium High 

Change in nucleon 
number (∆A) 

- 4 0 0 

Change in proton 
number (∆Z) 

- 2 +1 0 

Affected by 
electric/magnetic 

fields? 
Yes, both Yes, both Neither 

 
Examples 
 

Alpha decay 
 
 
Beta decay   
 
 
 
Penetration vs Ionisation 

If a particular radiation is highly ionising, it interacts strongly with any matter it passes through. This 
means that some of the KE of the radiation particle is absorbed with each interaction, which in turn 
means that the radiation has low penetrating power. 
 
α particles have very low penetration (or are highly ionising) compared to β particles for 3 reasons: 

1) They have a higher charge than β particles (γ has no charge), which means they interact 
strongly with other charged particles, e.g. ions or electrons in orbit around atoms. 

2) They have a larger mass, which means they are more likely to collide with other particles. 
3) They move slower, again increasing the likelihood of interacting with other particles. 

 
γ rays are weakly ionising (hence have high penetrating power) since they are uncharged, and have 
no rest mass. Their frequency is very high and so electrons (e.g. in orbits around atoms) can’t move 
quickly enough to interact with them, so they are unlikely to be absorbed or scattered. 
 
 

𝑹𝑹𝑹𝑹𝟖𝟖𝟖𝟖
𝟐𝟐𝟐𝟐𝟐𝟐  + 𝜶𝜶𝟐𝟐𝟒𝟒  𝑹𝑹𝑹𝑹𝟖𝟖𝟖𝟖

𝟐𝟐𝟐𝟐𝟐𝟐  + 𝜸𝜸𝟎𝟎𝟎𝟎  

𝑪𝑪𝑪𝑪𝟓𝟓𝟓𝟓
𝟏𝟏𝟏𝟏𝟏𝟏  + 𝜷𝜷−𝟏𝟏

𝟎𝟎  𝑹𝑹𝑹𝑹𝟓𝟓𝟓𝟓
𝟏𝟏𝟏𝟏𝟏𝟏  + 𝜸𝜸𝟎𝟎𝟎𝟎  
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Distinguishing between α, β, and γ 
 

 
Method 1: Penetrating power 
 
The three radiation types have very  
different penetrating powers. This can  
be used to determine whether a source  
is giving out α, β, or γ, or a combination  
of them. Shown opposite is a typical set-up, 
using different absorbers in turn. 
 
 

The background radiation should be measured first, and then deducted from each reading. 
The count rate should be measured first when there’s no absorber in place. 
If the radiation count decreases at all after inserting paper or card, then α is present. 
If the radiation count decreases further after inserting a sheet of aluminium, then β is present. 
What’s left (above background) must be gamma, however as an extra measure, a sheet of lead can 
be inserted which should further decrease the count rate, confirming the presence of γ. 
 
 
 
 
Method 2: Magnetic/Electric fields 
 

The apparatus opposite may be used to 
demonstrate the deflection of radiation by a 
magnetic field. 
Without a magnet the count produced after, 
say, one minute is recorded (position C). The 
magnet is then placed in position and the 
count rate at C reduces, but will rise again 
when the detector is  
moved to a new position such as A. 
 
 
 
 
 
If the count rate increases somewhere 
around position A, then the source is emitting α-particles. 
If the count rate increases somewhere around position B, then the source is emitting β-particles. 
γ-rays would not be deflected since they have no charge, and so would be detected at C. 
 
Note that detecting α-particles is more difficult because the deflection is a lot smaller and they are 
easily absorbed by even 10 cm of air. The deflection is smaller since α-particles have a much greater 
mass than the β-particles (albeit twice the charge). 
 
 

NOTE !!         Not all γ radiation is absorbed, even with a few centimetres of lead. 
 

 
 

After removing the magnet, an electric field could be set up across the area above the source. 
This wouldn’t affect the gamma rays, but the alpha particles would be deflected in the direction of the E-field, 
whereas the beta particles would be deflected the opposite way. This is an alternative way to the magnetic field 
method above, but produces similar results. 
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Radioactive decay 

Half-life, T1/2  
 

The half-life of a radioactive sample is defined as either: 
 
 
 
or 
 
 
 
 

Half-life values have a very wide range, from nanoseconds to millions of years. The half-life is 
unique to each isotope, and a measurement of this value is useful in identifying specific radioactive 
isotopes. 
 
The idea of half-life is illustrated  
in the graph opposite. 
 
The half-life here is 2 days, so, it 
takes 2 days for the count rate to 
decrease from 80 to 40 cpm, and  
from 40 to 20 cpm, etc.  
 

In fact, this works 
from any starting point, e.g. 
the graph passes ‘50cpm’ at  
about 1.3 days; it passes ‘25cpm’ 
at about 3.3 days, i.e. 2 days later.  
 
 
Decay equations 
 

The graph above shows that, although radioactive decay is both spontaneous (occurs without any 
impetus) and random (no way of knowing when the next decay will occur or which nucleus will 
decay next), since there is usually a very large number of unstable nuclei involved, the rate of decay 
is very predictable.  
 
 
 
 
The rate of decay (activity) of a given nuclide at any time is directly proportional to the number (N) 
of unstable nuclei of that nuclide present at that time. This can be expressed as an equation: 
 
     where   N = number of unstable nuclei present 
        λ  =  the decay constant; Unit =  s-1 
 
 

The negative sign ensures that N decreases as time increases.  
Note also that by definition, activity, A  =  dN/dt . 

The time taken for half the number of radioactive nuclei present to decay. 
 

     The time taken for the activity to decrease to half of its initial value. 

The rate of decay (number of disintegrations per second) of a sample of 
radioactive nuclei is known as the ACTIVITY, A. Unit: becquerel (Bq) = s-1 

 

A  =  - λ N 
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Hence, 
 
 
 
 
 

This type of relationship always leads to exponential decay. There are many examples of this kind of 
relationship (exponential decay) in real life, e.g. discharging a capacitor; damped oscillations; 
(enzyme-catalysed) chemical reactions; temperature change in an object hotter than its 
surroundings; rate of decrease of a beer ‘froth’!? 
 
The above equation can be solved by integration, giving the exponential form: 
 
 
       where    N0  =  number of unstable nuclei at   
                      time, t = 0 
 
A simple substitution using  A = - λ N, and A0 = - λ N0 , yields an alternative version in terms of 
activity: 
 
 
       where    A0  =  activity (Bq) at time, t = 0 
 
 
If the number of half-lives that have passed, x, (not necessarily an integer) is known, then a shortcut 
to finding the number of unstable nuclei or activity after a time, t, is: 
 
 
            or 
 
 
 
Calculating half-life, T1/2 
 

Using the equation N = N0𝑒𝑒−𝜆𝜆𝜆𝜆 we can derive an equation which relates the half-life to the decay 
constant. (This derivation is a requirement of the specification). 
 
After a time equal to one half life, N = N0 /2, and  t = T1/2 , and so: 
 

    
𝑁𝑁0
2

  =  N0 𝑒𝑒−λ𝑇𝑇1/2       ∴  ½  =  𝑒𝑒−λ𝑇𝑇1/2    
 
∴  Taking logs:        ln (1/2)   =  -  λ T1/2   … taking the minus to the right hand side… 
     
    ln (2/1)   =    λ T1/2 
 

∴   
 
 
 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  =  - λ N 

 

N  =  N0 𝑒𝑒−λ𝑡𝑡  

 

A  =  A0 𝑒𝑒−λ𝑡𝑡  

 

N  =  𝑁𝑁0
2𝑥𝑥

   
 

A  =  𝐴𝐴0
2𝑥𝑥

   

 

𝑇𝑇1/2  =  ln (2)
λ
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Examples 
 
1. The half-life of iron-55 is 2.6 years. Calculate, 
 
      (a) The radioactive decay constant (λ). 
      (b) The number of atoms in a sample of 1.0 g of iron-55             (NA = 6.02 x 1023 mol-1). 
      (c) The initial number of decays per second for 1 g of iron-55. 
 
(a)   λ =  ln(2) / T1/2  =   ln(2) / (2.6 x 365 x 24 x 3600)  =  8.45x10-9 s-1 
 
(b) The molar mass, M, of iron-55 must be (approx.) 55g = 0.055kg. 
       Number of moles, n  =  MT / M  =  0.001 / 0.055 = 0.0182 mol. 
      ∴   N = n x NA =  0.0182 x (6.02x1023)  = 1.1x1022 
 
(c) A0 = - λ N0  = (8.45x10-9) x  (1.1x1022)  =  9.3x1013 Bq 
 
2. (Taken from the PH5, June 2016 paper). 
    Polonium-211 decays to lead-207 with a decay constant (λ) of 1.343 s–1. 
    (a) Calculate the half-life of polonium-211.        [2]  
    (b) Calculate the initial activity of 4.22×10–11 kg of polonium-211.     [3] 
    (c) Calculate the percentage of polonium-211 nuclei remaining after 2.4 s.   [2] 
    (d) Calculate the time taken for the number of polonium nuclei to decrease to 0.1% of  
         their initial number.           [2] 
    (e) Explain why 4.22×10–11 kg of polonium-211 could be highly dangerous even though  
         it emits alpha particles which cannot penetrate human skin.      [2] 
 
(a)   T1/2  =  ln(2) / λ  =  ln(2) / 1.343  =  0.516 s 
  
(b)  n  =  MT / M  =  4.22×10–11 / 0.211  =  2.00x10-10 mol 
       ∴     N  =  n NA  =  (2.00x10-10) x  (6.02x1023)  = 1.20x1014  
       ∴    A0  = - λ N0  =1.343 x (1.2x1014)  =  1.62x1014  Bq 
 
(c)  N/N0 = e-λt  =  e –(1.343 x 2.4)  =  0.0398    ∴ % left  = 3.98% 
 
(d)  0.1%  = 0.001, hence  N/N0 = 0.001.  ∴  ln (N/N0) = - λ t       ∴  ln (N0 /N) = + λ t 
        ∴   t  = ln (1/0.001) /  1.343  =  5.14 s  
 
(e)  If inhaled/ingested, then the large activity, and the fact that alpha radiation is highly  
       ionising, would cause a lot of damage to the cells inside the body. 
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Section 3.6 -  Nuclear Energy 
 
The equivalence of energy and mass 

 

In 1905 Einstein made the startling suggestion that energy and mass  
are equivalent. He predicted that if the energy of a body changes by  
an amount E, its mass changes by an amount m given by the equation, 
 

where c = the speed of light (3.00x108 ms-1) 
 
      This doesn’t just mean that the energy produced in a nuclear  
      reaction (usually as the KE of the products) comes at the  
      expense of a little loss of mass, but that it also works in  
      reverse. If we collide particles in a particle accelerator, some  

        of the KE of the incident particles can be converted into  
     mass, whereby new particles are created at the moment of  
     collision!  

Binding Energy 

 
 

𝐻𝐻11   is the only nucleus which contains a single nucleon.  
All the other elements, including the other two Hydrogen  
isotopes, have more than one nucleon in the nucleus, held 
together by the strong nuclear force. This means that a  
significant amount of energy would have to be inputted  
to separate the nucleons in a nucleus so that they were  
all ‘free’ (unbound). The energy needed to completely separate the nucleons in a nucleus is known 
as the binding energy (BE).  
 

The consequence of inputting energy to separate the nucleons is that their mass increases a little 
once they’re separated (since energy and mass are equivalent). Hence, nuclei have a little less mass 
than the sum of the mass of their constituent (separated) parts. 
This ‘mass loss’, correctly known as mass defect, can therefore be used to calculate the binding 
energy (BE). 
 
Example 
 

The masses of a proton, neutron, and a Helium nucleus are, mp = 1.6726x10-27 kg,  
mn = 1.6749x10-27 kg, and mHe = 6.6465x10-27 kg respectively. Calculate  
 
(i) the mass defect, MD,           (ii)           the binding energy, BE. 
 
 

 
 (i) mass of Helium nucleus  +  MD   =   mass of 2 protons   +   mass of 2 neutrons 
 

        ∴    MD   =  (2xmp + 2xmn) – mHe  =   2x(1.6726x10-27) +  2x(1.6749x10-27) - 6.6465x10-27 
          ∴    MD  =  4.85x10-29 kg 
 

(ii)    Since  E = m c2,    BE = MD x c2  =  (4.85x10-29) x (9x1016)  =  4.365x10-12 J 

 

E  =  m 𝑐𝑐2  

Mass/energy needed to be ‘added’ to separate the nucleus. 
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The unified atomic mass unit (u) 

 

In nuclear physics mass is measured in a different unit, called the unified atomic mass unit (u). It is 
based on a scale which ranks the atoms according to their masses, using the common isotope 
carbon-12 as a reference. On this scale, carbon-12 is assigned a mass of exactly 12 u, and all other 
masses are expressed relative to this. 
 

Therefore, 1 u is defined as one twelfth (1/12th) of the mass of a carbon-12 atom. Hence, 
 
 
 
 
 
E = mc2 can now be used to find how much energy ‘1u’ is equivalent to: 
 
 E = m c2   =  (1.66x10-27) x (3.00x108)2 = 1.494x10-10 J 
 
converting this into electron-volts    E = 1.494x10-10 /  1.60x10-19  =  931 000 000 eV  =  931 MeV 
 
∴ 
 
 
 
 

This is a very useful conversion since atomic masses are often given in unified atomic mass units. If 
you are given atomic masses in terms of “u” then you do not need to use E = mc2, since it’s already 
been used, as shown above! 
 

 Simply multiply the mass defect (in ‘u’s) by 931 to find the binding energy in MeV. 
 
Example 
 

Using the mass values below, calculate the binding energy of an iron ( 𝐹𝐹𝐹𝐹26
56 ) nucleus:  

   mproton = 1.00728u,   mneutron  =  1.00866u,   mFe =  55.92067u. 
 
  MD =  (26 x mproton   +    30 x mneutron ) -  mFe   =  26.18928 + 30.2598  -  55.92067 =  0.52841u 
 
∴  Binding energy, BE = 931 x MD  = 931 x 0.52841  = 492 MeV 
 
In summary 

 

If masses are given in,  
 
kg     Calculate the mass defect, then use       BE = MD x c2   Answer in Joules 
 
‘u’s,   Calculate the mass defect, then use       BE = 931 x MD  Answer in MeV 
 
 
 
 

 

1 u  =  1.66x10-27 kg  

 

1 u  =  931 MeV  
Note!!   
If you check, this answer actually comes out as 934MeV ! However, if 
more accurate values for the speed of light, the mass of ‘1u’ and ‘e’ are 
used, it works out as 931MeV! 
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Binding energy per nucleon 

 

 
The total binding energy is linked to the size of the nucleus. The more nucleons there are, the 
greater the energy needed to separate them all out. 
 

A more useful comparison is the binding energy per nucleon. This is the average energy needed to 
remove each nucleon from the nucleus. Hence, the higher the binding energy per nucleon, the 
more stable the nucleus, as each nucleon is more strongly bound to its neighbours. It is easy to 
calculate once you’ve calculated the binding energy for a particular nucleus: 
 
 
 
 
 
 
Example 
 

On the previous page, the binding energy, BE, for iron-56 was calculated as 492 MeV. What’s the 
binding energy per nucleon for this nucleus? 
 
BE per nucleon =  BE / A  =  492 / 56  =  8.79 MeV 
 
If a graph is plotted of binding energy  
per nucleon against mass number,  
we are effectively mapping out the  
stability of all the elements, starting  
from hydrogen.  
 

As can be seen from the graph opposite,  
there’s a discernible pattern: low mass  
number nuclei are relatively unstable as  
they have low values for the “BE per  
nucleon”, but generally become more  
stable up to about iron (Fe), or nickel (Ni),  
where the “BE per nucleon” is highest.  
 
Above this (atomic number > ~60), the  
“BE per nucleon” decreases again, meaning  
that the nuclei heavier than iron/nickel become less and less stable. 
 

This simple pattern is all we need to explain why energy is released by fusion and by fission. 
 
 
 
 
 
 
 
 

 

BE per nucleon  =  BE
number of nucleons (A)
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Fusion and Fission 
 

 
Fusion is the process by which lighter elements join or fuse together to make  
heavier elements. It is the nuclei that fuse, and since nuclei are always  
positively charged, they will repel. This is why the lighter elements that  
are colliding during fusion must reach very high velocities (achieved by  
high temperatures) so that they get close enough to each other such that  
the strong nuclear force becomes stronger than the electrostatic repulsion.  
 
       Fusion releases energy only for low mass nuclei. This  
       is explained by the BE per nucleon graph.   
      2 very light nuclei like 2H and 3H have low values for  
       their BE per nucleon. When they fuse they make a  
       heavier nucleus (He in this case) which is higher up  
       the graph, i.e. has a higher value for the BE per  
       nucleon. This means the nuclei are more tightly  
       bound than before, and as discussed on page27, this  
       means the nuclei have slightly less mass than before,  
       and so the loss in mass is released as energy. 
 
 

Fission is the process where a heavy nucleus splits up into 2 or more  
smaller fragments. In radioactive nuclei, this happens naturally  
(radioactive decay). If a large nucleus is bombarded with an external  
particle, e.g. a neutron, it can cause it to split into two ‘daughter’  
nuclei of roughly equal masses. (This is known as induced fission and 
is the process used in nuclear power stations). By looking at the BE per nucleon graph, we can see 
that this leads to two lighter nuclei, both of which are higher up the graph, and hence, as with 
fusion, energy is released. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BE per 
nucleon 

mass number 

Most stable nuclei 
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Calculating the energy released by Fusion and Fission reactions 

 

 
When light nuclei fuse, or when heavy nuclei fission, more stable nuclei are created (their BE per 
nucleon increases). This means that the total mass of the products in both cases are slightly less 
than the reactants. This mass defect is converted into energy. The method for calculating the 
amount of energy released is very similar to the method for calculating binding energy, and 
assumes that mass-energy is conserved. 
 
Example.  Here’s a typical fission reaction: 
 

     𝑈𝑈92
235   +   𝑛𝑛01         𝑀𝑀𝑀𝑀42

95    +   𝐿𝐿𝐿𝐿57
139    +   2 𝑛𝑛01     +   7 𝑒𝑒−1

0   
 
Calculate the energy released by 1kg of U-235. Mass of neutron = 1.00867 u;  
Mass of   95Mo = 94.906 u; Mass of  139La = 138.906 u; Mass of   235U = 235.044 u 
 
Ignoring the mass of any electrons,  
 
  MD  =  (235.044 + 1.00867) - (94.906 + 138.906 + 2(1.00867))  =  0.06727u  
∴  Energy released per reaction = MD x 931 = 62.63 MeV 
 
Number of reactions =           total mass          =                  1 (kg)        =  2.56X1024 
                  mass of one U nucleus                 235.044 x (1.66x10-27)   
 
Hence, total energy released (by 1 kg) =   2.56X1024 x 62.63 MeV  =  1.60x1023 MeV  (= 2.57x1016 J) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note!!    
If masses are given in ‘kg’, use:  E = MD x c2

     (Answer in Joules, J) 
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