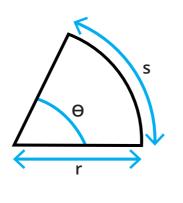
GCE Physics Unit 3.1 Circular motion

The radian:

The radian is defined as the angle subtended at the centre of a circle by an arc equal in length to the radius. It is equivalent to about 57.3°.

This means that one whole rotation travels through 2π radians.



Angular velocity:

Motion in a circle or a cycle can be described by its time **period**, *T*, **the length of time for 1 cycle** and its frequency, f, the number of cycles per second.

 $T = \frac{1}{f}$

For an object describing a circle at uniform speed, the **angular velocity**, ω , is equal to the angle θ swept out by the radius in time Δt divided by *t*.

$$\omega = \frac{\theta}{t}$$

As the time taken to complete a whole cycle, 2π , is T, the angular velocity can also be calculated by this equation:

$$\omega = \frac{2\pi}{T} = 2\pi f$$

The relationship between the arc length and radius is arc length = $r\theta$ – this is the distance the object travels in time t. This means the speed of the object, v, can be calculated using this equation:

$$v = \omega r$$

This object is traveling with a constant speed, v, in a circular path. However, its **velocity** changes due to the **direction** changing. This means it must be accelerating due to a force acting on the object.

This is known as the **centripetal** acceleration as it is acting towards the centre of the circle.

It can be calculated in terms of v, and in terms of ω .

$$a = \frac{v^2}{r} = r\omega^2$$

From Newtons 2^{nd} law; F = ma. Therefore, the force acting on the object can be calculated by these equations:

$$F = \frac{mv^2}{r} = mr\omega^2$$

F = force in N

T = period of one cycle in s

v = velocity in m s⁻¹

 ω = angular velocity in rad s⁻¹

f = frequency in Hz

r = radius in m

a = acceleration in m s⁻²

m = mass in kg

