GCE Physics Unit 3.6 Nuclear Energy

$E = mc^2$:

A carbon-12 atom contains 6 protons, 6 neutrons and 6 electrons, the sum of the individual mass of each of these is 2.009×10^{-26} kg. The mass of the carbon-12 atom is 1.993×10^{-26} kg. The lost mass has been **turned into energy** when forming the atom.

The amount of energy can be calculated using Einstein's equation, where E is the energy in J, m is the mass lost in kg and c is the speed of light in a vacuum, 3.00×10^8 m s⁻¹.

$$E = mc^2$$

The information for these questions often involves the use of other units. The mass will often be given in u = unified atomic mass = 1.66×10^{-27} kg. This is useful as a loss of 1u is equivalent to 931MeV of energy.

Binding energy:

Binding energy is the energy that has to be supplied in order to dissociate a nucleus into its constituent nucleons.

This is the energy released when the nucleons form a nucleus. Separately, having so many charged particles so close together is very unstable and therefore they have a high potential energy, forming a nucleus makes it more stable and the nucleons lose some potential energy. This is released and is equivalent to the mass lost.

Binding energy per nucleon:

Often, you will be asked to calculate the binding energy per **nucleon**. This is a useful way of comparing different nuclei.

Worked example (WJEC Physics Unit 3 2019)

Calculate the binding energy **per nucleon** for $^{90}_{38}$ Sr

 $m_{proton} = 1.007 \, 276 u$

 $m_{neutron} = 1.008 664u$

 $m_{electron} = 0.000549u$

atomic mass of $^{90}_{38}$ Sr = 89.907 738u

1u = 931 MeV

Nucleon mass

38 protons + 52 neutrons

= 38 (1.007 276u) + 52 (1.008 664u)

As the differences in mass can be very = 90.727 016u

small, rounding early can affect your answer. Avoid rounding until the final step.

energy.

As 1u = 931 MeV is given in the question,

Mass of the nucleus

atomic mass of $^{90}_{38}$ Sr – 38 electrons

Electrons are not part = 89.907738u - 38(0.000549u)of the nucleus so do not contribute to binding = 89.886 876u

Mass deficit

90.727 016u - 89.886 876u

= 0.840 140u

Energy

no conversion to J or kg is required. However, you would get the same answer 0.840 140u × 931 if you had converted.

= 782.170 340 MeV

Energy per nucleon

= 782.170 340 ÷ 90

90 nucleons = 38 protons + 52 neutrons

= 8.69 MeV

Energy cannot be lost or gained, only transferred from one form to another.

In all nuclear reactions, when new nuclei form, the binding energies are different.

In **fusion** reactions, smaller nucleon number nuclei combine to form larger nuclei with a larger nucleon number.

In **fission** reactions, larger nucleon number nuclei split to form smaller nuclei with a smaller nucleon number.

When nuclei undergo **fission or fusion** reactions, they form more stable nuclei with a higher binding energy per **nucleon**, the extra energy is released as kinetic energy or as photons.

Note that the most stable nuclei are at the peak of the curve, e.g. $^{56}_{26}$ Fe, as these have the highest binding energy per nucleon.