Lesson: 6-7

Equipment: Thermometers, boiling tubes two stands Goggles.

Safety:

Learning Outcomes

Name the equipment used in industry to measure the energy content in food.

More Challenging:

To be able to make a systematic method.

Most Challenging:

To make a success criteria which allows you to design a fair investigation.

Starter

They use a bomb calorimeter.

How do they work?

- The sample is the food.
- Inside the sealed bomb chamber is pure oxygen.
- The ignition box sets the food on fire.
- It burns and then the heat energy moves into the water.
- The thermometer then measures the temperature change.

If we know the mass of the food burned and the temperature rise of the water we can use a simple equations to work out the energy in that sample of food.

BOMB CALORIMETER

Using lab equipment you can do a similar experiment.

- Remember we need to burn food
- Then warm up water
- Then measure the temperature rise.

Draw a diagram of the apparatus we could use then explain your idea.

Using these apparatus we are going to investigate how much energy is in two types of Crisps.

cienc

Which type of crisp contains the most energy in KJ?

Research (Gwaith Cartref)

How much energy (KJ) is found in 1 gram of the following nutrients?

Carbohydrate

Protein

Fat

ICCESS Criteria Fill in a success criteria, what will we need to do for a successful fair investigation.	Burning food on mounted needle Water
Success Criteria. To be successful I will	Achieved Yes/No
Test two types of crisp and then compare their energy.	
	YSGOL CAL

Apparatus

- Clamp stand, clamp and boss
- Heat proof mat
- Bunsen burner
- 1 boiling tube
- Tongs
- Access to a balance
- Thermometer
- Measuring cylinder
- Goggles and hair tie (if needed)
- 2 different types of crisp

Method

This method is not in the correct order. Put the letters in the correct order for this method.

A. Using a measuring cylinder measure 20 cm³ of water and then place it into your boiling tube.

- B. Calculate the temperature change.
- C. Measure the mass of your crisp in grams.
- D. Hold the burning food underneath the boiling tube of water.
- E. Once the food has fully burnt, place it on the mat and measure the temperature of the water.
- F. Set up your apparatus.
- G. Repeat this for the two crisps and carry out repeat readings.
- H. Use the thermometer to measure the temperature of your water.
- I. Hold the food with the tongs and set it alight using the Bunsen burner.

F (A,C,)H I,D,E,B,G

A,C can be swapped.

Design a suitable result table.

Look at method on the work sheet, this will help you decide on the number of columns needed in your table.

For each question answer by using your thumbs.

1) The independent variable is the type of crisp?

2)Use a beaker to measure the 20 cm³ of water.

Time: Noise Level

2)Use a beaker to measure the 20 cm³ of water. How can I correct this?

Use a measuring cylinder

3) The dependent variable is the mass of the crisp.

cienc

Temperature change of the water.

4) I will control the following variables, volume of water, equipment used and the distance between the burning food and the boiling tube.

4) I will control the following variables, volume of water, equipment used and the distance between the burning food and the boiling tube.

5) During investigation I carry out repeat reading so I can find out if my results are reliable.

5) During investigation I carry out repeat reading so I can find out if my results are reliable.

